arXiv:2502.11169v2 Announce Type: replace
Abstract: This paper introduces the Constrained Monte Carlo Tree Search (CMCTS) framework to enhance the mathematical reasoning capabilities of Large Language Models (LLM). By incorporating a constrained action space, Process Reward Model (PRM), and partial order rules, CMCTS effectively addresses the limitations of existing MCTS methods in terms of state space diversity and action selection rationality. Specifically, during the expansion phase, CMCTS restricts action sampling to a predefined constrained action set to increase candidate state diversity. In the simulation phase, it introduces partial order rules and PRM to optimize action selection and prevent unreasonable state transitions. Experimental results show that CMCTS performs outstandingly across multiple mathematical reasoning benchmarks. Under a zero-shot setting, a 7B-parameter model achieves an average accuracy of 83.4%, surpassing the 72B baseline model by 4.8%. Ablation studies demonstrate that each component of the framework is crucial for performance improvement, and their combined use fully leverages their respective strengths. Overall, the CMCTS framework provides an effective approach to enhancing LLM mathematical reasoning capabilities, supported by theoretical analysis, and offers novel insights for future reasoning tasks.