arXiv:2506.16370v1 Announce Type: new
Abstract: Large Language Models (LLMs) such as GPT-4 produce compelling responses to a wide range of prompts. But their representational capacities are uncertain. Many LLMs have no direct contact with extra-linguistic reality: their inputs, outputs and training data consist solely of text, raising the questions (1) can LLMs represent anything and (2) if so, what? In this paper, I explore what it would take to answer these questions according to a structural-correspondence based account of representation, and make an initial survey of this evidence. I argue that the mere existence of structural correspondences between LLMs and worldly entities is insufficient to ground representation of those entities. However, if these structural correspondences play an appropriate role – they are exploited in a way that explains successful task performance – then they could ground real world contents. This requires overcoming a challenge: the text-boundedness of LLMs appears, on the face of it, to prevent them engaging in the right sorts of tasks.